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Abstract 
 
We created a highly efficient, universal 3D quantum transport simulator. We demonstrated that 
the simulator scales linearly – both with the problem size (N) and number of CPUs, which 
presents an important break-through in the field of computational nanoelectronics. It allowed us, 
for the first time, to accurately simulate and optimize a large number of realistic nanodevices  in 
a much shorter time, when compared to other methods/codes such as RGF[~N2.333]/KNIT, 
KWANT, and QTBM[~N3]/NEMO5. In order to determine the best-in-class for different 
beyond-CMOS paradigms, we performed rigorous device optimization for high-performance 
logic devices at 6-, 5- and 4-nm gate lengths. We have discovered that there exists a fundamental 
down-scaling limit for CMOS technology and other Field-Effect Transistors (FETs). We have 
found that, at room temperatures, all FETs, irrespective of their channel material, will start 
experiencing unacceptable level of thermally induced errors around 5-nm gate lengths.  
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NOMENCLATURE 
 
 
FET field-effect transistor 

CMOS complementary metal–oxide–semiconductor 

TFET tunneling field-effect transistor 

SET single electron transistor 

CNT carbon nano-tube 

MuGFET multiple gate field-effect transistor 

FinFET MuGFET utilizing a thin silicon "fin" which forms the device body 

ITRS International Technology Roadmap for Semiconductors 

 

DOS density of states 

LDOS local density of states 

NEGF non-equilibrium Green’s function  

CBR Contact Block Reduction  

RGF recursive Green’s function 

QTBM quantum-transmitting boundary method  
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EXECUTIVE SUMMARY 
 
 
How small can transistors, the basic building blocks of modern electronics that currently drive 

$250-billion semiconductor industry, get? Are there any fundamental limits for Moore’s law – 

besides the obvious atomic size limit? If so, are there any ways to overcome such limits? – These 

are the questions that we asked ourselves when we began EC LDRD project of creating a 

universal quantum transport device simulator. The simulator uses a very efficient algorithm 

developed by the PI that allows us to dramatically reduce computational costs of quantum 

transport calculations and hence vastly increases our ability to simulate a large variety of 

different ultra-scaled CMOS and beyond-CMOS structures at the end of ITRS roadmap for 

semiconductor devices. Surprisingly, we have discovered that at room temperatures, all field-

effect-transistors (FETs), irrespective of their channel material, will start experiencing 

unacceptable levels of thermally induced errors when gate lengths approach 5nm. This prediction 

effectively means that the end is in sight for downscaling and Moore’s law for all FETs, 

including the most crucial FET technology – CMOS. According to the current ITRS projections, 

5nm gate lengths will occur in about 15 years from now. What are the industry possibilities after 

the thermal fluctuation limit is reached? We see at least three: 

 Accept the end of Moore’s law and concentrate efforts on power dissipation reduction 

with the reversible/adiabatic computing  

 Develop non-FET alternatives: memristors, super-conductive logic, etc.  

 Continue Moore’s law, using single-electron transistors!  

The latter option seems to be the most exciting to us: indeed there will be still a lot of “room” 

below 5nm-gate lengths (atomic size is about 0.2 nm) and any possibility to extend Moore’s law, 

which has been so beneficial to world’s economy, should be closely investigated.  
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INTRODUCTION 
 

The ultimate end of CMOS scaling was predicted almost immediately after the now 

ubiquitous technology was invented by Frank Wanlass [1] in 1963. Indeed, many possible 

limitations to downscaling were discussed in the 1970s, 80s, and 90s [2]. In 2003 Zhirnov et al., 

estimated [3] the minimal feature size of a “binary logic switch” to be around 1.5nm, based on 

the Heisenberg uncertainty and Landauer principles. Since then, there have been many papers 

[2,4,5] discussing the likely end of CMOS scaling due to lithographical, power-thermal, material, 

and other technological, as opposed to fundamental physical, limitations.  

Despite the aforementioned predictions, however, CMOS has famously survived, albeit with 

adaptations (high-k gate dielectrics, revival of metal gates, etc.). Furthermore, the immense 

increase in the understanding of semiconductor physics since the 1960s has resulted in a plethora 

of “alternative CMOS” technologies that are generally FET-based. In fact, arguments are 

frequently made that III-V-, CNT-, or 2D-material-based FETs have the potential to someday 

replace present Si FETs due to their superior mobilities and ultra-scale manufacturing capability. 

However, proponents of these devices have also made it evident that such devices are not yet 

ready to compete with state-of-the-art Si FinFETs for high performance computing applications. 

In fact, ITRS now projects [6] that the emerging trend of Si FinFET technology should allow 

Moore’s law to continue for at least another decade until 6-nm gate lengths are reached.  

In this work we present our findings from EC LDRD #165618 “A Universal Quantum 

Transport Computational Capability for Cross-Technology Comparisons of Beyond-CMOS 

Nanodevices” by D. Mamaluy (PI) and X. Gao. Within the scope of this LDRD we have created 

a universal quantum transport simulator that allows us to assess and compare, within a 

reasonable simulation time, the performance of the different types of beyond-CMOS transistor 

technologies. The simulation tool is based on a novel numerical method called Contact Block 

Reduction (CBR) [7,8] that was developed by the PI. The CBR method provides an efficient and 

accurate implementation of the Keldysh Non-Equilibrium Green’s Function (NEGF) formalism 

[9] for quantum transport simulation that turns out to be significantly faster than other existing 

methods, as identified by independent reviews [10,11].  

This report is organized as follows: a brief description of the EC LDRD project is given, 

followed by a presentation of the details of the of the universal quantum transport simulator,  

CBR3D. We then list and analyze the most significant findings obtained with CBR3D. This 

report is concluded with a discussion of further ideas for research and the associated directions 

industry may consider after the thermal fluctuation limit is reached. 

 



11 
 

1.  UNIVERSAL QUANTUM TRANSPORT SIMULATOR: CBR3D 
 
1.1. Motivation 
 
As industry and academia work to increase the speed of transistors by shrinking their size to 

nanometer dimensions with gate lengths of 10 nm or less, conventional theories used to predict 

device behavior are becoming obsolete because they fail to account for quantum effects. Existing 

semi-classical Technology Computer Aided Design (TCAD) tools work only with conventional 

CMOS devices. While there has been a significant effort in the computational nanoelectronics 

community to simulate a particular promising novel beyond-CMOS device, until now there has 

been no common tool that allows performance comparisons of different types of beyond-CMOS 

devices. Examples of these devices include ultra-scaled Si and III-V FinFETs, carbon nanotube 

FETs, graphene-based and other two-dimensional material-based transistors, tunneling FETs.  

 
Figure 1. Some examples of the most promising emerging alternatives to conventional CMOS: 
FinFET (Tri-gate) (top-left), nanowire (top right), graphene-based and carbon nanotube transistors 

(lower left and right, respectively). 
 
The CBR3D code enables such cross-technology comparisons and can be invaluable for guided 

development of advanced nanoelectronics, including the corresponding experimental and 

fabrication efforts. 
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1.2. Overview of the existing methods and simulators  

A number of powerful methods have been developed through time to calculate the quantum 

transport through nano-structures. A well-known approach is the transfer matrix method [12,13]. 

While this approach is unstable [14] for larger devices in its original form, this drawback was 

overcome by a series of generalizations developed by Frensley [15], Lent et al. [16], and Ting et 

al. [17]. These approaches use the quantum transmitting boundary method (QTBM) [16] to 

account for the coupling to the leads, and can handle structures of arbitrary geometry. There are 

QTBM implementations applied to one-dimensional tight-binding Hamiltonian [17,18] and k-

dot-p based [19] multi-band calculations, and two-dimensional (2D) single-band calculations 

[16,20]. A three-dimensional self-consistent scheme based on QTBM has been presented [21] in 

a case when device potential is separable. The boundary element method [22] is more 

computationally efficient, but so far the published applications are limited to wave-guide 

structures, i.e. structures possessing a flat potential [23] or consisting of piecewise homogeneous 

materials with constant potentials [24]. Another efficient and widely used algorithm is the 

recursive Green’s function (RGF) method [25,26] that has been successfully implemented for 

two-dimensional devices [27,28] and for small three-dimensional structures such as nano-wires 

[29]. It is well suited for 2-terminal devices that can be discretized into cross-sectional slices 

with nearest neighbor interactions, but has serious difficulties dealing with additional (i.e. more 

than two) contacts [7]. A closely related modular recursive Green’s function method [30] is 

applicable to devices that can be divided into regions of sufficiently high symmetry, where the 

Schrödinger equation is separable, and has been adapted to include magnetic fields [31]. Another 

method that is applicable for the case of spatially separable device potentials and when current 

can flow through two leads (e.g. in the situation of quasi-1D transport) has been termed the 

mode-space approach [28]. This method has been implemented in the effective-mass simulator 

NanoMOS that has been extended to arbitrary crystallographic directions [32,33]. A 3D 

simulator within the validity of the effective-mass approximation using the mode-space approach 

for silicon nanotransistor has been reported where scattering is taken into account by Buttiker 

probes [34]. An application of the mode-space approach to ultra-small FinFET simulations has 

been presented [35] in which phonon scattering and surface roughness have been taken into 

account. Another simulator for 3D silicon nanowires based on the effective-mass approximation 

and the mode-space approach has been presented in [36]. In that work the simulation was 
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performed assuming that the device potential is separable in the confinement direction (mode 

representation) and the transport direction, along which the potential is assumed to be nearly 

uniform. The resulting quasi-1D transport problem is solved using a simplified NEGF formalism 

self-consistently. Finally, a modified version of the QTBM has been developed that expands the 

scattering solutions in terms of two different closed system wave functions in an efficient way 

for 2D systems with arbitrary number of contacts [37].  

Thus, among reviewed simulators only a few are able to take into account more than two 

Ohmic contacts in order to treat gate leakage effects properly, and all of these simulators are 2D. 

Additionally, many “fully 3D quantum simulators” treat the transport as a quasi-1D problem, 

wherein it is automatically assumed that there are only two Ohmic contacts in the system and 

thus the effects of gate leakage are neglected.  

In contrast, in our research we utilized the CBR method [7,8], within which all open system 

quantities of interests such as currents and charge density can be obtained from I) eigenstates of a 

specially defined closed system 0H    with generalized Neumann boundary conditions 

[7] and II) solution of a very small linear algebraic system of the size of the “contacts” (boundary 

regions between the active device and external leads) for every energy step. The quantum 

transport simulator based on the CBR method has been developed by the PI and allows 

calculating transport properties of 2D and 3D nano-devices that may have arbitrary shape, 

potential profile, and, notably, any number of external contacts, which differentiates it from 

simulators based on the abovementioned recursive Green’s functions method (e.g. NEMO5 

[38]). The CBR simulator takes into account surface and interface roughness, scattering on 

impurities, discrete dopants, phonons and electron-electron interaction. The charge self-

consistency is achieved by adopting the predictor-corrector approach, which has been shown to 

reach the convergence within only 5-7 iterations [8,39]. 

 

In the following sections, we will present some details of the underlying CBR method of the 

newly created universal quantum transport simulator CBR3D and will discuss the code 

scalability with problem size and number of CPUs. 
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1.3. The Contact Block Reduction (CBR) method 

In the CBR method, quantities such as the transmission function and charge density of the open 

system can be obtained from the eigenstates of a corresponding closed system 0H Eaa a= , 

and a solution of a very small linear algebraic system for every energy step.  Remarkably, we 

have shown that the calculation of relatively few eigenstates of the closed system is sufficient to 

obtain accurate results [7,8].  

The first step of the CBR method consists of formally dividing the device space into two 

regions: the boundary region corresponding to the contact with the leads,C , and the region 

corresponding to the rest of the device,D . The self-energy matrix, representing the coupling of 

the device to the leads, is non-zero only in the region C  and therefore has the following structure 

C CD

DC D

é ù
ê ú= ê ú
ê úë û

0

0 0

Σ
Σ , where 0 ’s denote the zero-matrices for the corresponding regions. In a 

similar manner, we can subdivide all the Green’s function matrices. In particular, the Green’s 

function of the decoupled device (i.e. the corresponding closed system) can be written as 

0 0

0

0 0

C CD

DC D

é ù
ê ú= ê ú
ê úë û

G G
G

G G
. It has been shown [7,8] that after some algebraic manipulations, this leads to 

the following structure of the retarded Green’s function matrix of the open system: 

1 0 1 0

0

0 1 0 0 0 1 0 0
, where .

C C C CD

C C C C

DC C C C DC DC C C CD D

- -

- -

é ù
ê ú= = -ê ú

+ +ê úë û

R
A G A G

G A 1 G
G A G G G A G G

Σ
Σ Σ

 

Of note, this equation shows that all elements of the retarded Green’s function can be calculated 

by inverting only a small matrix, CA , of the same size as the interface (termed contacts) between 

the device and external leads. In Ref. [43] it was shown that the transmission function is 

determined only by the elements of the following submatrix, of the same small size as the 

contacts: 1 0R
C C C

-=G A G . In Refs. [7,8,39] it has been shown that any other quantity of interest, 

such as the density matrix, particle (charge) density, etc., can be found with similar 

computational effort. Indeed, the density matrix ξ  can be calculated as: 
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where the equilibrium distribution functions within each lead are denoted by ( )f El ; the 

matrix 0
C C C C= -B 1 GΣ  and all the other matrices are of the size of the contacts only; a  are the 

eigenfunctions of the closed (decoupled) system. Then the charge density can be expressed as  

 ( ) ( ) ( )
,

n a b ab
a b

y y x= år r r . 

The current 
'

J
ll

 from lead   to lead '   can be expressed in terms of the transmission function 

'( )T Ell  and the distribution functions of the leads (the most general form has been given in [44]) 

 ( ) ( ) ( )[ ]
' ' '

2
,

e
J T E f E f E dE

hll ll l l= -ò   

where e  is the electron charge, h  is Planck’s constant, and E  is the energy. Finally, the 

transmission function ( )'T Ell and the reflection coefficient ( )R El  can be obtained from the 

contact part of the retarded Green’s function RG of the open device  

 
( ) ( )
( ) ( ) ( )

' †
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' †
'
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R R
C C C C

R R
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T E

R E T E i

l l
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l l
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Γ Γ

Γ Γ
 

The crucial property of the CBR expressions shown above is that all quantities of interest can be 

found from a small part of the retarded Green’s function matrix corresponding to the contact 

region. 

Finally, the calculation of the Green’s function of the decoupled device 0G  is performed 

through its spectral representation ( )0 ,C C
C E E Ea a

a a
=

-åG and is only needed in the contact 

region. The eigenfunctions a  are obtained by solving the Schrödinger equation of the 

decoupled device employing generalized Neumann boundary conditions [7] at the contacts. The 

use of these boundary conditions drastically reduces the required range of the eigenvalue 

spectrum in the calculation of the transmission function. As such, only a few percent of the 

eigenvalues are usually sufficient. The remaining task of solving the Dyson equation for each 

energy value is also reduced, typically by an order of magnitude, because only propagating 

modes need to be taken into account, providing that the device region is defined properly [7,8]. 
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The CBR provides an extremely efficient method to solve the quantum transport problem 

in an open system. The CBR computational cost is primarily determined by the partial solution 

of the Hermitian eigenvalue problem of a closed system. The CBR method is capable of taking 

into account several connected leads precisely (i.e. without neglecting any off-diagonal elements 

of the self-energy, unlike in the recursive Green’s function method, see e.g. [7,8]). This makes it 

possible to apply the method to complicated 3D structures with an arbitrary number of leads. 

The CBR method has been generalized to multi-band Hamiltonians [7], and fully charge self-

consistent calculations [8]. To achieve the charge self-consistency in our simulator we are using 

the predictor-corrector approach [42], modified for open systems [8]. As discussed in the 

following section, we can obtain a solution converged up to the third significant digit of the 

current within a few Poisson-(open) Schrödinger cycles. 
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1.4. Self-consistent CBR method with Anderson acceleration 
 
For a detailed description of the self-consistent procedure please refer to Ref. [8] and [39]. Here, 

we summarize the essence of the self-consistent CBR algorithm with the flowchart shown in 

Figure 2.  

 

 

 
 

Figure 2. Flow-chart of CBR3D algorithm with Anderson acceleration 

 
First, we initialize the system’s geometry, material parameters (Si, Ge, III-V, SiO2, high-k 

dielectrics, metal work-functions), crystallographic orientation, doping profiles and external lead 

configuration (number, position and geometry of leads). Then an initial guess is made for the 

electrostatic potential ,either a flat potential (zero, if references to the equilibrium Fermi level) 

or the potential taken from the previously converged bias point.  The energy integration range 
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based on the applied voltages and temperature is then determined, followed by the calculation of 

transverse lead modes (2D Eigen states) that determine the self-energy. Afterwards comes the 

first major computational step: solution of the closed-system eigenproblem 0H aa e a=  

with generalized Neumann boundary conditions [7]. In the CBR3D code we utilize two 

eigensolvers, ARPACK [40] and FEAST [41]. A comparison of each eigensolver will be given 

in the next section. After the closed system eigenvectors and eigenvalues are computed, weakly 

coupled “quasi-bound” states are detected and extracted to facilitate better convergence [8]. The 

last significant computational step is the energy integration of LDOS, transmission function, and 

the other open-system quantities of interest that are efficiently computed in the basis of the 

closed-system (generalized Neumann) states. Once the open-system properties (electron density, 

LDOS) are determined, we invoke the predictor-corrector algorithm [41,8] to solve the non-

linear Poisson equation and satisfy the charge self-consistency. However, to further aid the 

convergence in highly-resonant systems, we follow up the predictor-corrector method with the 

Anderson acceleration scheme that, as we found [39], provides faster convergence in many 

cases, as illustrated in Figure 3.  

 

Figure 3. CBR3D: self-consistent loop convergence of the original predictor-corrector 
method (Pred-Corr) and with the same method with Anderson acceleration technique 

(colored plots). 
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1.5. Scaling of CBR3D code with problem size and number of CPUs 

The theoretical analysis of the CBR method predicts linear scaling (e.g. [8]) with the problem 

size N, which can be compared to other methods/codes: Recursive Green Function (RGF) 

method [~N2.333]/KNIT, KWANT, and Quantum transmitting boundary method (QTBM) 

[~N3]/NEMO5. However, the CBR is a rather complicated method, so it is important to 

demonstrate that the linear scaling is not just theory, but the achievable practice. Figure 4 shows 

total CBR3D iteration time (normalized with size) vs problem size (number of grid points). 

Perfect linear (~N) scaling is clearly demonstrated by the flattening of the curve with an 

increasing number of grid points. 

 

Figure 4. CBR3D scaling with the problem size (number of grid points) 
 
Our results shown in Figure 4 are for a simulated 7-nm gate length Tri-gate device discretized 

with 105 to 106 grid points. We find that a typical 500,000 grid simulation requires 3 hours per 

iteration using a 12-core workstation (CPU: Xeon X5675 @ 3.07GHz, 32 nm Westmere-EP) 

with 50GB of shared memory. The average number of iterations per bias point is 7. We note that 

previously simulations of such scale could only be performed on expensive clusters.  

We also analyzed the scaling properties of CBR3D code with number of CPUs available on 

shared memory systems. The latter choice is determined by the nature of the computational 
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problem in the CBR method: we need to solve for the lowest states of a large eigen problem and 

then perform the energy integration of LDOS. LDOS is a massive array of the size of NxNE, 

where N is the size of the problem in real space (i.e. number of grids that discretize the volume 

of simulated device), typically N~105-106; and NE is the number of energy grid points, typically 

NE~1000-10000. For realistic 6-4nm gate length FET simulations it is sufficient to use N~106 

and NE~2000; hence, distributed memory systems (clusters) would not be a very efficient choice 

for these type of problems, since relatively inexpensive shared memory systems ($5k 

workstations) have sufficient memory.  

 
Figure 5. CBR3D scaling with the number of CPUs/cores 

 

Indeed, the required memory estimate for CBR3D is L*N*NE*8 bytes = L*16 GB, where L is 

the number of independent external leads that may have different applied voltages. For FETs L is 

equal to 3, and therefore a 48GB shared memory system would be the most efficient choice for 

these types of calculations. We note that both the solution of eigenproblem and energy 

integration of LDOS are also much more efficient on shared memory systems as illustrated in 

Figure 5, where we observe an 8x speed-up on a 10-CPU system is observed. This is a rather 

remarkable achievement, given the relative complexity of the CBR algorithm.  
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2.  PERFOMANCE OF OPTIMIZED NANO-DEVICES AT THE END OF 
THE ITRS ROADMAP 

 
2.1 The ultimate limit of FET downscaling (overview) 
 
When discussing fundamental limits of FET downscaling, the following three considerations are 

usually considered pertinent: 1) physical atomic size ~ 0.2 nm, 2) the Landauer principle [45], 

which states that the switching energy (of a binary switch) must be higher than ln 2,kT  and 3) 

the minimal feature size of a binary switch, estimated by Zhirnov et al. [46] to be 1.5 nm. The 

latter estimate is based on the Landauer principle and the Heisenberg uncertainty principle: the 

authors argue that since 

 

min

ln 2

2

switch

e switch

E kT

x p

E t

x
p m E



  
  

  




 

 , 

the binary switch feature size (e.g. gate length) must be larger than [46] 

  min 1.5 300 .
2 ln 2e

x nm T K
m kT

  


  

However, it is easy to see that this estimate only applies to the minimal possible (for irreversible 

process) switching energy: ln 2.switchE kT  It has been shown, however, that modern CMOS 

architectures cannot operate at such low switching energies due to prohibitively high expenses 

associated with necessity to compensate for thermally induced errors [47]. In fact, the minimal 

switching energy of a realistic (FET) transistor that guarantees its error-free lifetime operation is 

of the order of 100switchE kT [47], [48]. Thus, for realistic transistors (that operate sufficiently 

far from the thermal fluctuations/Landauer limit) Zhirnov’s estimate is not relevant. Indeed, we 

have  

  min 0.12 300
2 100e

x nm T K
m kT

  


  

which is smaller than the atomic size and therefore does not affect the fundamental downscaling 

limit of FETs.  
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2.2 Gate switching energy  
 
Before we proceed further, let us discuss the downscaling limits imposed by the existence of the 

minimal switching energy. The gate switching energy is the amount of energy necessary to 

switch a FET on/off. It’s easy to see that the switching energy is related to the electrostatic 

energy of the corresponding MOS capacitor: 

 2
switch g gE C V Q V    

We note that the concept of switching energy applies to all FETs, including MOSFETs, 

MuGFETs, TFETs, SpinFETs, SETs, etc., but is not applicable to non-FET devices, such as 

memristors. We also point out that any scalable technology results in the reduction of the gate 

capacitance, gC . For CMOS technology, the voltage is roughly constant and therefore the 

switching energy simply scales down with the gate capacitance.   

 

2.3 Switching energy estimates based on ITRS data 

Recent projections for CMOS technology downscaling and characteristics for the next decade 

[6], published periodically by ITRS, are as illustrated in Figure 6: 

 

 
Figure 6. ITRS projections for future high-performance logic devices (table PIDS2). 
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While the specific numerical figures presented in ITRS reports tend to be revised in each new 

edition, representative data of the continuing downscaling trend for switching energy has been 

obtained [49] , as shown in Figure 7: 

  
Figure 7. ITRS gate length projection (green) for high performance Si FinFET devices and 

the calculated switching energy per device projection (blue). Inset shows the 
extrapolated data. 

 

The dashed curves and open symbols in the inset represent our extrapolation of ITRS data. This 

new way of plotting the switching energy leads to the interesting observation that, as gate length 

scales down, the switching energy becomes ever closer to the energy of thermal fluctuations. 

Hence, according to ITRS projections, scaling of the FET technology is likely capable of 

continuing for another 15 years (provided that the UV lithography, gate dielectric/work function 

engineering and other significant technological challenges can be addressed in one way or 

another). However, by the year 2030, scaling will reach a fundamental limit, when the switching 

energy becomes less than 100kBT, below which reliable FET-based logic operations may not be 

possible due to the thermal noise induced logic errors.  
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2.4 Switching energy obtained from CBR3D calculations 
 

To investigate the reality of the projected data and the thermal fluctuation limit, we employed 

our fully 3D charge-self-consistent quantum transport simulator CBR3D to simulate the 

electrical performances of MuGFETs at gate lengths of 6-, 5- and 4-nm. All MuGFETs structures 

considered have their geometry and doping profiles been optimized in order to satisfy ITRS 

specifications (Fig. 6) for each node. We note that the CBR method allows us to calculate the 

source-drain and gate leakage currents rigorously (i.e., in the same full 3D quantum-mechanical 

way). The effective gate capacitance Cg is extracted using the quasi-static approximation: the 

corresponding capacitive (i.e. induced) charge distribution is given by c(r) = qΔn(r)/ΔVg, with 

Δn = n(Vg=Vdd) – n(Vg=0). An example induced (capacitive) charge distribution is shown in 

Figure 8 for an optimized 6-nm Si FinFET. 

 

Figure 8. Induced (capacitive) charge calculation and distribution in a 6-nm Si FinFET. 
 

We simulated and analyzed a number of MuGFET structures consisting of Si/Ge/GaAs channels, 

state-of-the-art HfSiON/SiO2 gate dielectrics, and TaN metal gates, with a variety of doping 

profiles, and at several gate lengths including 6-, 5-, and 4-nanometers.  
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Figure 9. Geometry/doping profile optimization procedure and I-V characteristics of 6-nm 
FinFET (HfSiON/SiO2 dielectric, TaN metal gate) 

We obtained optimized devices for each gate length (see Figure 9 for I-V characteristics of an 

optimized 6-nm FinFET device), and extracted the switching energies for these candidates to 

compare with (and confirm) the ITRS projected data, as shown in Figure 10.  

 

Figure 10. Switching energy vs gate length per CBR3D calculations (yellow circles). 

As is clear from Fig. 10, MuGFETs will hit the thermal fluctuation limit at gate lengths of 

approximately 5nm. We have also determined that an alternative choice of channel materials 

(Ge, III-V, etc.) does not alter our finding that thermal fluctuations set the fundamental 

downscaling limit for FETs, since the gate capacitance is mainly determined by the node 
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geometry and dielectric material. Specifically, we have considered the following materials with 

different crystallographic orientations (wafer)/[channel direction]: 

 Si in 3 different orientations: (100)/[001], (110)/[001], (110)/[1-10];  

 Ge in 2 different orientations: (100)/[001], (111)/[-211]; 

 GaAs (conduction band only, spherical effective mass: 0.067*me) 

and found [39,52] that while alternative channel materials/orientations may significantly affect 

the electron mobility and current density, the gate capacitance varies by less than 10% 

comparing with the standard Si wafer/channel  (100)/[001]. 



27 
 

 

CONCLUSIONS 
 
By developing a novel CBR3D simulator, have discovered that there is a fundamental, as 

opposed to a technological, downscaling limit that will prevent the room-temperature operation 

of all sub-5nm gate length FETs. This limit effectively indicates an end to downscaling and 

Moore’s law for all FETs, including the most crucial technology – CMOS. According to the 

current ITRS projections [51], this will occur no later than in 15 years from now when gate 

lengths approach 5nm. Even more alarming, this downscaling limit could be reached even 

earlier, if CMOS technology is replaced by more power-efficient structures such as tunneling 

FETs. This is because TFETs have much steeper subthreshold slopes, and consequently lower 

operating voltages [48] - for example 0.1V could be used in a TFET instead of 0.5V for the 

corresponding CMOS node. In this situation, the gate capacitance of such TFETs would be the 

same or smaller than capacitance of the corresponding CMOS transistors. That means an 

additional factor of 25 reduction for the switching energy, which would bring TFET technology 

against the thermal fluctuation limit much sooner than CMOS. 

We argue that this fundamental thermal fluctuation limit holds true for all charge-based FET 

technologies since they all operate on similar principles. Thus, it is necessary to rethink the 

question, what is the actual “beyond-Moore” challenge? The tremendous deflationary influence 

of Moore’s law on the global economy is yet to be fully appreciated [50]. It is clear, however, 

that when the density of transistors stops increasing, the exponential decline of the price per 

function in computing is also going to stop. With these considerations in mind, we argue that the 

actual beyond-CMOS challenge lies in extending Moore’s law beyond the 5-nm feature size 

down to sub-nm (few atoms) size. In doing so, the essential problem is that downscaling below 

4-5nm feature size cannot be realized using FETs (or TFETs) – irrespective of any high device 

channel mobility, steep threshold slopes that can be achieved, or whatever non-Si, alternative, 

2D, etc. materials may be generally used.    

As such, we foresee at least three industry possibilities after the thermal fluctuation limit is 

reached  

(1) Accept the end of Moore’s law and concentrate efforts on reducing power dissipation 

with the adiabatic or reversible computing;  
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 (2) Use non-FET alternatives: memristors, super-conducting logic, etc.  

 (3) Continue Moore’s law using single-electron transistors!  

The third option seems to be the most promising in our opinion. Indeed, there will be still a lot of 

“room” below 5nm-gate lengths (atomic size is about 0.2 nm) and any possibility to extend 

Moore’s law, which has been so enormously beneficial to world’s economy, should be closely 

investigated. Since 2
switch gE q C for SETs, their switching energy trend vs. gate/island 

capacitance is opposite to that of all other FETs, which may allow their downscaling to sub-5nm 

gate lengths.  
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